首页> 外文OA文献 >Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth
【2h】

Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth

机译:根据遥感海表温度,叶绿素和模拟混合层深度估算的全球月度海表硝酸盐场

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Information about oceanic nitrate is crucial for making inferences about marine biological production and the efficiency of the biological carbon pump. While there are no optical properties that allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may permit its inference from satellite data. Here we report a new method for estimating monthly mean surface nitrate concentrations employing local multiple linear regressions on a global 1° by 1° resolution grid, using satellite-derived sea surface temperature, chlorophyll, and modeled mixed layer depth. Our method is able to reproduce the interannual variability of independent in situ nitrate observations at the Bermuda Atlantic Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region. Our new method is shown to be more accurate than previous algorithms and thus can provide improved information on temporal and spatial nutrient variations beyond the climatological mean at regional and global scales.
机译:有关海洋硝酸盐的信息对于推断海洋生物产量和生物碳泵的效率至关重要。虽然没有可以直接估算无机氮的光学性质,但其与其他生物地球化学变量的相关性可能允许从卫星数据推断出它。在这里,我们报告了一种新方法,该方法使用卫星衍生的海面温度,叶绿素和模拟混合层深度,在全球1°x 1°分辨率网格上使用局部多元线性回归估算月平均硝酸盐浓度。我们的方法能够重现百慕大大西洋时间序列,夏威夷海洋时间序列,加利福尼亚海岸和新西兰南部地区的独立原位硝酸盐观测值的年际变化。我们的新方法显示出比以前的算法更准确的方法,因此可以提供有关区域和全球尺度上超出气候平均值的时间和空间养分变化的改进信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号